B.Sc. (Semester - 6)
Subject: Physics
Course: USO6CPHY21
Quantum Mechanics

UNIT-3  Uncertainty Principle & SHO

The Uncertainty Principle:

The uncertainty in the value of quantum mechanical observables also deflned \insthe
same way of uncertainty principle. If 4 is an observable and {A) its expectatlon oF ean value
in the state ¥ , then deviation is A — {4} and is the self adjoint operatar T‘he square of this
deviation gives the uncertalnty of A, itis denoted by AA. _'

s+ (8A)? = ((A—(A)?) = (4%) - <A>2 (351)
Similarly for other variable B , we can write NS
(AB)? = ((B — (B))?) = (B? )—(B’)2 - (3.2)
Here, AA and AB are not operator, but 4 — (A) IS the square root of mean square
operator. Now, this operator is represented by dewat'o_n"ape'rator D, and D,,.
2Da=A-{) € \\ . (33)
p,=8-8 CANJ* - (34)
Now, using the positivity property of operators

(Do — iADy) Dt CMDb)ﬁ;O . (35)

A is a real parameter.
Let we expand the product as,
DX+ AD Db iAD,D, + 2D},
Now taking the different-i‘étl wuth'respect to 4 and equating to zero, we get

(0 +iD,D, — iDyD, + 24 Dp%) = 0

a4 A{i[Day Dy]) + 22(Dp)* = 0
- <_£[Dw Dh])
2(Dyp)*

Substltutmg this Value of A in equation (3.5), we get

% 2."’ ; — l[Da!Db]) ; <_1[Daf Db]) (_i[DaJDb])Z
4 (Da +LWDan_ W b a+4<D—bz)2

2 ([DthD ([Dcu D.‘J]) ([Da’Db])Z
(Do +—773 DaDs 2z Db a+4(D—b2)> =0

2(Dy)*
. ) ([DaJDb]) <[Da7Db])
BT
2 4{Dy*) (Dp*) + ([Da, Dp1)* 2 0
From equation (3.3), we have

D, =20

=0

D,? = A% — 2A {A) + (4)?
2 (Dg%) = (A%) — 2{AXA) + (4)?
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= (A%) — 2(A)* + (A)?
+ (Dg?) = (A7) — (A)?
Similarly, (Dy%) = (B?)—(B)?
Now,
[Da, Dp] = [A —(A), B —(B)]
= [A, B] — [{4), B] — [A,(B}] + [{4),(B)]
~|D,, Dy] = [A, B]
Here, other terms vanish by the property of commutators.
Now, using equations (3.8), (3.9) & (3.10} in (3.7), we get
4 [(A%) — (A][(B?) — (B’ ] +{[A.B])* = 0
Using equations (3.1) & (3.2) in above relations, we get
4 (AA)*(ABY? +{[A,B])? = 0
=~ 4 (AA)?(AB)? = —([4, B])? 42, \
~ (AA)?(AB)? = —1([A B])? - (3.11)

» (AA)(AB) = —= ([A B]) N ..(3.12)

This is the product of uncertainty in A and B and is of"the_ order of commutator [A4, B].
Equation (3.12) gives the general statement of the um:e" alnty principle for any pair of
observables A, B. £

If A, B are a canonically conjugate palr of operatars |'_ is characterlzed by

Then, equation (3.12) becomes

(a4)(aB) 2 % B

Here, sign is not important. , ™\,
Now,

2 “Example: Prove that the same state of all the component of L is impossible.
“MNow, we have
[Ls sy | =HRE,
Now, consider a function ¢ which satisfies both the eigen equation of L, and L,,.
Ly =myd
and L,d=m,d
Now, multiplying equation (3.17) by L,, and (3.18) by L, and subtracting we get,
LyLyd=L,m,P
Ly Ly ¢ =L, myq)
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(LyLy —LyLy )b =L,myd—L,m,d
2 (Lyly —LyLy)d=myL,p—myL, b
=mym,d —mym, P =0
“leLy]d =0
Now, comparing this equation (3.19) with (3.16), we get
[LLy]d = ihL,d=0
L,p=0
Similarly, if we repeat the calculation for L, and L,, we must have

L,b=0
and L,p=0

Hence, if any two components of angular momentum have same engen state and

applying this eigen state on third component then results will be __z____e_:rq_._ Thus,._*the eigen state

of all the three components of angular momentum will not be same.

States with Minimum Value for Uncertainty Product

We have obtained the uncertainty principle (Ax) (Ap)' '?-h smg the positive property

((Dg — iADp)(Dg + iADy) =0,

..(3.25)

If the L.H.S of this equation becomes zero then th product of uncertainty will be zero. For

this we must have the state function ¥ (x) such that
(D, + Lﬂpb)‘}{,__f Oy

Db ik px (px>
()952)_ (px> (px)z
OB E (p2) — (p.)
We also knoWwithat,
D N\, Zied
2 (Apy)?
[Da!Db] = [A,B] = [x, px]
_ (~i)(ih)
2(Apy)?
Substituting equations (3.28), (3.29) & (3.33) in equation (3.26), we get
v+ D e~ )| =

g % i ol :
Substituting Px = —lha and arranging the terms, we get
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- (3.27)

- (3.28)
. (3.29)
.. (3.30)
(33D

.. (3.32)




752 (—zhdi— (px))l w=0

= (x) H (px>l =0

2 (Ap)tdx 2 (Apx)2
hZ
ZGpyiax TET Wy (a P2 (p")l -0

dv 2Ax2 :
_.d_+{ BP)” )y — (p)}quo
X

d 2
d_W_ {2 @ - <px>}q,
X

L av {2 (Ap,)? (px)

5= (x = (x) =

Integrating on both the sides, we get

_ (2(4p)
W = — {h—z(?—u)

(A px)

Here the factor —= is contain in contsta nt‘Nr

The wave function is hormalized

' 1
; 2
—) exp

Equatlon (3 35) gives the normalized wave function for which (Ax){(Ap,) has the

mmlmum value —. Note that ¥ has the form of a Gaussian function ‘modulated’ by the
oscﬂlafory factor exp (:") x].

For minimum uncertainty
h
(Bx)(p:) =5
h

¥ P 2(Ax)
Substituting this value of Ap, in equation (3.37), we get

Dr P M Patel, V.P. & R.P.T.P.Science College, Vallabh Vidyanagar




2 h2 /2 2 h2
l#|? = (m) exp l—m(ﬂf - <x))2]
. |_ (x - <x>)zl
2(Ax)?
Since |¥]? is negligibly small outside a region having dimensions of the order Ax =

|2 = [27 (Ax)> ] ..(3.39)

(h/ZAp ), the wave function (3.35) is said to describe a minimum uncertainty wave packet.
X

Commuting Observables; Removal of Degeneracy:
Consider an eigen equation L AN
Ad, = ad, A .;;(3 40)

Let us consider another operator B which commute with A. Now ope[att}r B on both
the sides we have :
BAb, = aBd, ) .
But, BA = AB 4 .
= A (Bdg) = a( Bdy) ..(3.42)

Thus, not only ¢,, but Bd, also is an elgensf Ie of A belonging to the same
eigenvalue a. If ‘@’ happens to be a non degenera‘te elge value there is only one eigen
function belonging to it and hence B, must bg_'a nS _ .nt ‘multiple of ¢,, say

Bda = bba AW ..(3.43)

This means that ¢, is also an eigen functldn of B, belonging to eigen values b. Thus,
any eigen function belonging to a ___:non;gﬁgge.nerate eigen value of a pair of commuting
operator A, B is necessarily an eige-@::_fh"' tlon of the other operator.

It is possible to choose a basic s&iof r eigen functions in such a way that each of them
is an eigen function of B. In thls manner one can obtain a complete set of simultaneous eigen
functions ¢ for any palr of cemmutlng observableA B.Ifther mdependent eigen functions
belongingto a glven_d

if each (baz,g is mdl\ndually normalized, the set of all such 5|multaneous eigen functions forms
an orthonormal set

J-(babc d)a p'c’. dT 5&& Jabb' 5cc bozan

Evolution of System with Time; Constants of The Motion:

The time dependent Schrodinger equation is

F aw(?_’"’ t) hz 2 - — -
LTIT = —%V Y o)+ V()P ()

2

h
_— 2 7 =
5 Ve+ V()
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oW (¥t
ih% = Hop¥ (1)

H,), is called Hamiltonian operator. ¥ is a function of 7 and t.
The solution of equation (3.45) is
W, 6) = u@) (1) ..(3.47)
where, d(t) = Ne ..(3.48)
The expectation value of operator does not depend on time. For example, operator A,

(4) = ] W@, ) Hyy W (7 6) dr
= f £ (P) () Agpu(P) b(2) dx

= fu*(?) e/ Agpu(r) e "h gr
Hence, if an operator is not depending on time, then
(A) = fu*(?) Agpu(¥) dr

+* Postulate-4: W,
The state ¥ varies with time in a manner determined by.the' chfodinger equation

where H,, is the Hamiltonian operatqy’: Thebamc dynamical variable # and p do not
change with time. Yy
Con5|der operator Aop which are expllatly tlme dependent.

—(A(r 3 e z f (P t)Aop‘P(r T

A G G oY
(A(r P 0) = | 5 AP O f P a;’”lp dr + f V' Agp -dT ..(351)

- (3.52)

..(3.53)
Usmg equatlons (3 52) & (3. 53) in equation (3.51), we have

Ay, 1
oy g+ f W Aoy (= Hop¥) dr

(Hopsv) Ay ¥ dT + f o =

But, H'Op is Hermltlan

d 1 044y 1
o 8) =I—E'}’*HDPAOp‘IJdT+f‘I’*—‘P dr+f'1”*A H,,Wdr

ot % in

d 1 04,

2 {d) = f { = [Aop, Hop] + a }av dr - (3.54)
Thus, the rate of change of the expectation value of any dynamical variable 4 may be

obtained as the expectation value of (ih) 1[4, H] +Z—':. This operator may be taken to

; ; dA
represent the dynamical variable =
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dA 1 34,
(E)Up = —[Aop, Hop] + 22 .. (3.55)

If A is any dynamical variable which is not explicitly time-dependent then djt =0

and it commutes with H , then (A) is independent of time. Such A is said to be a conserved
quantity or constant of motion.

Non-Interacting and Interacting Systems:

Suppose we have two system. The two systems may be two individual particles or a
particle and an atom or two atoms. Let us use the symbol ‘1’ to denote the dvnamlcal
variables for the first system and 2’ for the other. The Hamiltonian of the combmed : vstem

will depend on both the sets of variables.
~ H(1,2) = H(1) + H,(2) . \
Then the systems are said to be non-interacting because the\ar do ncrt mfluence each

other. 3 :
If system 1 is an eigen state u(1) of H;(1) and 2 is in_._aﬁe-%igen&'é’fe v(2) of H,(2) then
Hy (D u(1) = E; u(1) and H, (2) v(,2)_,= Ezv(z) ..(3.57)

H(1,2) u(Dv(2) = [H,(1) u(l)lvt’ g+ tt(l)[Hz(Z) v(2)]
= E, u(1) v(Z) + u(,l) Ez v(2)
= [E; + E;) u(l) ”(2)
~HA2))u(Dv(2) = E u(l)v(Z)
Here, E = E; + E, ; L
Thus, the eigen functions of" the“:v omblned system consisting of two non- interacting
subsystems are products of the, e:gen functlons of the individual subsystems, while the energy
eigenvalue E is a sum of Ey and Ez :
If the systems, 1"and Nifiteract mutually, then H(1,2) can not be separated but
interaction part is ntr;_pdy{;egl_ as
W N H(1L2) =H Q) + H(2) + H'(1,2) - (359)
o0 ) is'the interaction part of the Hamiltonian and H,(1) + H,(2) is the free

SyStems of Identical Particles:
lf we have a system of N identical particles then total Hamiltonian is H(1,2, ....N). If
any tu;:o particles interchange or exchange the H,, will not be change. As a result
¥(1,2,.... N) will not effected.
We use new operator P;; for exchange of particles. It is known as exchange operator.
Byl L 2 il fywved) = WL 200l well) «(3:60)
If we operate again then,
B Byl & ol weell) EBip T, conlifyna ™)
v Py P2, i, N) = W12, ey, o N)
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Here, we use equation (3.60)
PUZIP(LZ, si iduneeN) = WLl T sV w361
e Pij2 = 1

The eigen equation of the exchange operator is given by
P =219
and P2d =A%
comparing equations (3.62) & (3.63), we get
Az =41
. A=+1 WY
There are two possible eigen values +1 for exchange operator of the elgen functlons

Jooe NYE(L2, by e N) = H(L2, e g, NE NP (1,2, oo, o N)
= H(1,2, Dby, .o N 4, j, e N)
« PH — HP 5,0\
~ [P, H}p —-0 _
Hence, P and H have the same efgen functions. If H has eigen function

v(1,2,...i,j,.... N) then N\ .
PY(1,2,....0, N) =4W(1,2,...0,j, ... N)
Here, ¢, and ¢_ are symmetrlc_and antlsymmetrlc respectively under interchange of
the particles. _
We conclude that the wa\re':f ti (;l) must belong to one of the types:
(a) The totally sym etrtc (even) type which remains unchanged (1 = +1) under any

The elem__e__nt__ary particles in nature are classified in two ways

(a) Thdg’e ‘which always have totally antisymmetric wave functions and

(b} T"hose which have totally symmetric wave functions.

")\-* The particles which have symmetric wave functions are called Bosons, which obey the
Bose-Einstein statistics. Its spin is an integer multiple of h. Photon, m —meson belong
to this category. They are bosons.

» The particles which have antisymmetric wave functions are called Fermions. They

obey Fermi-Dirac statistics. Its spin is half integer of h like ;h,;h, ... ... The fermions

are electrons, protons, neutrons etc. The fermions obey the Pauli-exclusions principle.
The antisymmetric wave function is represented by the determinant
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WD) Wy(2) oo
W (1) Wy(2) oo

W) WD) o (N)

The Simple Harmonic Oscillator:
#» The Schrédinger equation and energy eigen values: P
The force acting on the pendulum is proportional to the displacement x. Then.the motion
of e is known as simple harmeonic oscillator. \ ¥ 4
o Fox

Where k is force constant.

Where, force constant k = mw?
Now, Hamiltonian operator is

.. (3.66)

Because'ﬁ —> “WVand k = mw?
§ The statlonary state energies E,, and wave function u,(x) are the solution of time
mdepehdent Schrodinger equation. The wave equation is given by
Hu(x) =Eu(x)
Using equation (3.66), we can write

h2 2 1 —
[%V +2ma) X lu(x) = FE u(x)

For one-dimensional, we get
—h? d?
——+ -—mw?x lu(x) = Eu(x)

Multiplying both sides by — h—z
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d’u  m?w?

d__ 2 xPu(x) =
u
[E— mwx]u=0

This is the Schrodinger equatlon for S|mple harmonic oscillator.

Now take x = ,O/a where, a = %

Substituting this value in above equation, we get
d?u

" dp?
~d’u  2mE
" dp? + aznz

Substituting the value of @ = ,% in above equation, we haye

v - 2B ; : ;
Taking — = 4, dimension less quantity.

Because E = hv = (%) (2nv) = ha):_;_
d?u

v@*‘[i P]

This is the dimension IessSch_ '_"dmger equation.
» To examine t:hq_v_asxmptotlc behaviour of wave function u(x)[x = too]:
Asymptotic behavi@u ans the behaviour of wave function for large value of x.
For simplicity plibp =%
. o 2 /
tior his, equation is ulx) =e " /2
Another éélﬁ::tion |s ulx) = o hauey 00, when x — oo,
Therefore, we interpolate in the solution
! 5 1) =e™* ) .. (3.69)

Substltutlng this solution in equation (3.68). Here ¢(x) is unknown polynomials.

. ddzz[ 2/, 00|+ [A—x ][e—x 29| =0

" dx[ Pl GO d‘l’( ) ¢(x)e_xz/2 (—%Zx)l +A—x2e "2 o(x) = 0

— e 2+ x2pe ™
+ [/1 —x ]e
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d? d
d—ﬁ — 2x g +(A-1Ddkx)=0 - (3.70)

+» Series Solution:
Let us now obtain the series solution of equation (3.70). Suppose its series solution is
given by

d(x) = a, x - (3.71)

L) = ) ay e+ 5) A

n=o0
w

and d"(x) = Z a, (n+5s) (n+s— Dxmts—2

n=0
substituting these values in equation (3.70), we get

Z(n+s)(n+s—1)x"“’52 2x (n + 8) x™*S~ 1+(ﬁ ‘l)x”*‘]an—o

n=0

Z (n+s)(n+s—Dx"5"2-2(n+5s) x"_*..*.’ﬁ .

_l)xn]an =0

Now, eq uatlng thegen a "cgefﬂcnent of x™ to zero
~ fn +‘-2‘)(ﬂ + Dayey —[2n—(A—-1)]a, =0
\2)(n + 1Da,., =[2n— 1+ 1]a,
Gz 2n=(A=1)
Ty (n+2)(n+1)
ThJS formula is known as recurrence formula.

. (3.74)

For n — oo, if the ratio of two successive coefficient tends to zero, then the series is
called convergent series.

$@) = ) ayx”

= qo + ax? + agx* + +a,k;&c‘rc + ak+2xk+2 4o
Here k is oo
Arsr 2K
a e iy 0
a k2 k
We know that,
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2
et _1+t+21+3l+

3 o
=1+x? +7+§+

The ratio of two successive coefficients is

xk+2 (k =+ 2/2) I o

N (AT
The behaviour of the coefficient is series ¢ (x) is exactly the same as in the senes for\
cu() =e 2 )

= _x/Ze

—e " /2—)00 whenx - co | - .

The above function will be unacceptable wave functiongin orderto aV0|d this situation
the value of A is chosen in such a way that the power series‘for q;.(x) gets cut-off after certain
number of terms, thereby making ¢(x) a polynomlals

For example,

b(x) = ag + ax? + ax* + - :

If we want to terminate the serles after_;- t’hree terms, then the coefficients
(g, Ag, A1, ... should be zero. .

This could happen only when the numerator in recursion relation is zero. Now, put
n = 4 in recursion relation N\

_ 8™~ 1) _8-Q@-1)

o Numerator =8—(1—1) =0
~A—1=8
“A=9
Q. “A=2n+1
We cany sa\ar that for A = 9 the series will terminate after three terms.
The value of 1 which make the series to cut-off at nt” terms is

2E
hw
—11‘1 A

=

1
“E = shon+1)

1
‘E:h —_
w(n+2)
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where,n = 0,1,2,
This gives energy eigen values of simple harmonic oscillator.
Forn =0,

E—lh
_2(,_)

It is known as the zero-point energy.

Potential energy
of form Energy

Transition
energy /
pa

energy levels.
A constant spacing betweeny

what had been postulated by Max Plank?’

The wave mechangﬁél é'a:pEQ‘fer;_,nt gives definite non-zero value for the ground state

energy £, = ﬁ?m This is, ”'\gllu'é-q__ z&yb-point energy.

» Orthonormaljty:
The orthorjoé:r':"'r?ifl' y property of the set of functions is

(e 1) = f W () 11, () 6% = B

q___préve this property of the stationary state wave functions u, (x) we make use of
knoWn roperties of Hermite polynomials. The generating function G(p, h) of the Hermite
polynomials defines as

o 1
G(o,) = ) —Ha(pIh" -~ (3.77)
n=0

— g(-n*+2ph) ..(3.78)

T ;
Here, h is a parameter. H,(p) is the coefficient of  In the expansion of e 1" +2ph,
7l

Now, consider the integral
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+oo

_f G(o, )G (p, ke dp

— oo

Now, substituting equations (3.77) & (3.78) in (3.79), we get
+ oo

hmhfn +co 2 —p2 _h2420h..—h'2+20n'
ZZ ml nl J’ m(P)Hn(p)e P dﬂ = J’ e P e pho p dp

—0a
+co

s f g—P*+2p(h+h’)—(n?+n'?) dp

—oo

prpm onpmpm A\
ZZ frmmwww:ﬁzz_ﬁﬁmay
m n

Now, equating the coefficient of R™A™ on both the sides, we get

+ca

f Hy(p)H,(p)e " dp = vm 2" m!

—Ca
+0a

* f Hm(p)Hn(P)e_pz dp = \/Eznnldm |

This is the orthogonal property of wave functlon of '_mple harmonic oscillator.

Qu e;-;fion Bank

Multiple choice questions;
(1) According to general s_tatement of uncertainty principle if AA and AB give the
uncertainty in the measurement of 4 and B then (A4)?(AB)? >
(b) T

d 1
14,81y
_ Pela canonically conjugate pair of operator, then [4, B] =
(AN Jn/2™ (b) I
{¢) 3 (d) 2ih
The same state of all the components of operator is impossible
Nda) P (b) L
(c) K (d) 7
The value of constant of integration for Box normalized momentum eigen function
is
1 (b)
/2T
1 (d)
N
(5) Time dependent Schrodinger equation in shorter form is given by Hu =
{a) Eu? (b) E

Dr P M Patel, V.P. & R.P.T.P.Science College, Vallabh Vidyanagar




() EH (d) Eu

Force acting on the pendulum is proportional to

(a) Velocity (b) displacement
(c) Time (d) acceleration
Hamiltonian operator for simple harmonic oscillator is H =

@ p* 1 (b) p?
T L o

(c) 1 2 (d) pz

Zkx o

7 o + kx
Potential of harmonic oscillator is V =

(a) mgh (b)

(c) p? (d)

2m \
Energy eigen value of simple harmonic oscillator is given by E#&™

(a) Thv
(c) Nhv
(a) hw

() 3
z hm

The ground state energy for simple ha..r’f\ng'.rz]_:__’l'e'-'{jz.‘_;cillator is E=
(a) hw < (b)

(c) 3
Eh(l)

Short Questions: & :
Show that lfthe mpdnents of angular momentum Lx and Lyhave the same eigen
functiongthan they?:are commutative operators
ger‘talnty principle for operators A and B
Setup the amiltonian for simple harmonic oscillator
erte the dimension less Schrodinger equation for simple harmonic oscillator
Drawithe energy level diagram of simple harmonic oscillator

Long\Questions:
1. State uncertainty principle and discuss it for quantum mechanical observables.

2. Prove that the same state of all the component of Lis impossible

3. Derive the dimension less Schrodinger equation for simple harmonic oscillator

4. Set up the Hamiltonian of simple harmonic oscillator and derive the expression of its
energy eigen value
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